Continuous Contour Monte Carlo for Marginal Density Estimation With an Application to a Spatial Statistical Model
نویسنده
چکیده
The problem of marginal density estimation for a multivariate density function f (x) can be generally stated as a problem of density function estimation for a random vector λ(x) of dimension lower than that of x. In this article, we propose a technique, the so-called continuous Contour Monte Carlo (CCMC) algorithm, for solving this problem. CCMC can be viewed as a continuous version of the contour Monte Carlo (CMC) algorithm recently proposed in the literature. CCMC abandons the use of sample space partitioning and incorporates the techniques of kernel density estimation into its simulations. CCMC is more general than other marginal density estimation algorithms. First, it works for any density functions, even for those having a rugged or unbalanced energy landscape. Second, it works for any transformation λ(x) regardless of the availability of the analytical form of the inverse transformation. In this article, CCMC is applied to estimate the unknown normalizing constant function for a spatial autologistic model, and the estimate is then used in a Bayesian analysis for the spatial autologistic model in place of the true normalizing constant function. Numerical results on the U.S. cancer mortality data indicate that the Bayesian method can produce much more accurate estimates than the MPLE and MCMLE methods for the parameters of the spatial autologistic model.
منابع مشابه
Continuous Contour Monte Carlo for Marginal Density Estimation with an Application to Spatial Statistical Model
The problem of marginal density estimation for a multivariate density function f(x) can be generally stated as a problem of density function estimation for a random vector λ(x) of dimension lower than that of x. In this paper, we propose a technique, the so-called continuous Contour Monte Carlo (CCMC) algorithm, for solving this problem. CCMC can be viewed as a continuous version of the contour...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملCurve and Surface Estimation using Dynamic Step Functions
This chapter describes a nonparametric Bayesian approach to the estimation of curves and surfaces that act as parameters in statistical models. The approach is based on mixing variable dimensional piecewise constant approximations, whose ‘smoothness’ is regulated by a Markov random field prior. Random partitions of the domain are defined by Voronoi tessellations of random generating point patte...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملExtending the rank likelihood for semiparametric copula estimation
Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007